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Particles that oscillate with respect to a background fluid experience a long-range attraction and a short-
range repulsion that give rise to clustering at a preferred separation. We have studied the structure and
dynamics of these clusters for both smalls2,N,7d and large(N=25 or 48) clusters. For small clusters, the
particles often form well-defined structures with chaotic fluctuations about the mean particle positions. How-
ever, for a givenN, there are generally several different structures, e.g., both isosceles and equilateral triangles.
The nearest neighbor spacings grow systematically with the dimensionless driving accelerationG. Large
clusters are less rigid, and show much larger velocity fluctuations than do small clusters, for sufficiently large
G. The fluctuation amplitude grows systematically withG for large clusters, but not for small ones. The
instantaneous particle velocity is typically largest when a particle moves through a region where its probability
density is low. Some of the observed phenomena suggest a variational model in which particles seek minima
in an effective potential, and are perturbed by dynamically generated noise arising from the nonlinear interac-
tions between particles. However, pairwise forces cannot account for all of the results. We discuss the nature
of the fluctuations, including the low apparent dimension of the occupied set in configuration space for clusters
of modest size.
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I. INTRODUCTION

Particles that oscillate with respect to a background fluid
have been shown to experience an attractive interaction that
can be described as a consequence of Rayleigh streaming, a
nonlinear effect that creates a secondary dipolelike flow
around each particle[1]. This phenomenon can create heap-
ing of granular materials submersed in a fluid[2], and may
be of significance in connection with sedimentation or fluid-
ized beds[3] or the clustering of spheres falling in a viscous
fluid [4]. A related clustering phenomenon was seen previ-
ously in electric-field-driven suspensions of polyballs[5] that
are much smaller than the granular particles studied here.

In addition to this attractive interaction, previous experi-
ments [6] also noted a short-range repulsion between par-
ticles, again mediated by the fluid. The combination of the
short- and long-range interactions creates a preferred spacing
that results in the formation of ordered or disordered clusters.
The previous paper focused on the mechanism of attraction
and provided examples of ordered and disordered patterns.
We also pointed out that fluid-mediated particle interactions
provide an interesting mechanism for self-assembly of or-
dered structures complementary to other approaches[7].

Recently, Otto and Voth[8,9] measured the three-
dimensional flow field around an oscillating sphere, and
around a pair of oscillating spheres, near a solid boundary.
They found that the basic streaming theory for single isolated
particles must be substantially modified when a particle os-
cillates near a boundary, or when two particles are present.
Their measurements support the basic notion that the ob-
served particle interactions are caused by steady streaming
flows, which are attractive when particles are not too close
together, and repulsive at smaller separations. However, un-
derstanding the range of the repulsion and the rate of attrac-
tive approach of two particles was shown to require more

than the simple single particle flow fields proposed by Voth
et al. [6].

In the present work we substantially extend our previous
investigation, by making a systematic study of both small
and large clusters. While small clusters are relatively rigid,
large ones allow much more extensive particle motion within
the clusters. However, in both cases, the particle spacings
fluctuate due to chaotic interactions mediated by the hydro-
dynamics. We show that there are usually several distinct
patterns for each value ofN, the number of particles in the
cluster. This investigation provides information about the
particle interactions, and demonstrates conclusively that
when more than two particles are present, the forces cannot
be described by a superposition of pairwise forces. We argue
that this system provides an interesting dynamical system
that has both discrete and continuum aspects.

II. EXPERIMENTAL METHODS

The experimental setup has been described previously[6],
and we give only a brief summary here. The experiments are
conducted using a closed aluminum container that is 6 cm in
diameter and 1.5 cm tall, mounted on a vertical shaft and
precision bearing assembly whose purpose is to constrain the
motion of the container to be vertical. The bearing is fixed on
a rigid aluminum structure, and the shaft is driven from be-
low by an electromagnetic vibrator. The vibrator is coupled
to the shaft by a thin nylon threaded rod to ensure that any
slight transverse misalignment of the vibrator does not affect
the motion. The container is completely filled with a water-
glycerol mixture of kinematic viscosityn=8310−6 m2 s−1,
and an adjustable number of spherical stainless steel beads of
radiusa=0.397 mm and density 8.0 g/cm3. The bottom of
the cell is a slightly concave lens of curvature radius 0.5 m,
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which is used to prevent particles from drifting to the edge of
the cell due to a slight imperfection in the leveling of the
cell. A small amount of NaCl is included in the fluid to make
it slightly conductive, thus allowing us to ground the con-
tainer to avoid charging effects.

The nondimensional acceleration is given byG=v2S/g,
whereS is the driving amplitude andg is the gravitational
acceleration. Corrected for buoyancy, the acceleration would
be smaller by a factor of 0.86. We use a calibrated acceler-
ometer to determine it. The vibration causes the particles to
oscillate over a depth of several particle diameters near the
bottom of the fluid layer. The particle Reynolds number
(based on its rms velocity, the fluid viscosity, and the particle
size) is typically in the range 2–10. The particles quickly
form clusters under the influence of hydrodynamically medi-
ated forces, and we image the clusters using a fast charge-
coupled device camera.

We track the particle positions using particle tracking pro-
grams written inIDL by J. C. Crocker and E. Weeks. We first
find the position of each particle in each image to an accu-
racy of about 0.1 pixels. After determining the trajectories,
we eliminate the drift of the center of mass of the cluster by
redefining the positions asr 8st ,pd=r st ,pd−kr st ,pdlp, where
r st ,pd is the position vectorsx,yd at timet of particlep. The
origin of these new coordinates is at the center of mass.

To calculate the mean spacings of various neighboring
particle pairs, we plot a histogramPssd of pair spacingss in
a given run(or time series). Most histograms use a bin size
of 0.01 mm, but a few have larger or smaller ones. We usu-
ally find that a sum of Gaussian functions provides a reason-
able fit to the data:

Pssd = o
k=1

n

Ak expF− ss− sckd2

2sk
2 G , s1d

wheren is the number of peaks in the distribution. From this
equation, we find the parameterssck and sk, which are the
mean neighbor spacings and the rms variations measuring
fluctuations of these spacings, respectively.

The cluster structure is characterized by computing the
particle number density(number per unit area as a function
of the radial coordinate). It is computed in radial rings of
width equal to 1 pixel.

To establish the chaotic nature of the fluctuations, we
compute the correlation dimension of the attractors in phase
space. For a cluster of sizeN this computation utilizes the 2N
time series of the coordinates. In contrast to most computa-
tions in the literature, there is therefore no need to use time
delayed coordinates to reconstruct the attractor.

After determining the trajectories, we fit second order
polynomials to the coordinatesxstd and ystd to find the ve-
locities. These fits use weightingss 5

9 , 8
9 ,1 ,8

9 , 5
9

d over five ad-
jacent points. The velocity components are then taken to be
the coefficients of the quadratic terms in the fitted polynomi-
als.

To compute the probability distribution of velocities, we
use a bin size equal toÎkvi − v̄il2/ log10 N, rounded to the
nearest first, second, or fifth power of ten, whereN is the
number of points, andvi is the velocity component in thex

or y direction. A Gaussian function is fitted to the distribution
for each component, and the root mean square speed is then
defined asÎkvx

2l+kvy
2l.

III. EXPERIMENTAL RESULTS

A. Small clusters: Multiple attractors

We studied both small clusters of 2–6 particles and large
ones containing 25 and 48 particles. We begin by describing
the dynamics of small clusters, and then proceed to discuss
large clusters.

1. N=3

For small clusters, there is generally more than one time-
averaged configuration for a given number of particles. For

FIG. 1. (Color online) Particle trajectories vs time forN=3 par-
ticles, for (a) an equilateral triangle mean state(dimensionless ac-
celerationG=4.52); (b) an isosceles triangle mean statesG=2.96d.
The frequency is 15 Hz here and for all subsequent figures.
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example, for three particles, we find(a) equilateral triangles,
in which the spacings fluctuate, but there is a single peak in
the distribution of spacings, and(b) isosceles triangles, in
which there are two peaks in the distribution of particle spac-
ings.

These features may be seen in plots of the particle trajec-
tories as a function of time(Fig. 1), plots of pair separations
vs time(Fig. 2), and plots of the distribution of pair spacings
(Fig. 3) for the equilateral and isosceles cases. In Fig. 1(a)
(equilateral case), it can be seen that the particles move pre-
dominantly on a ring. In Fig. 1(b) (isosceles case) we use
color online to distinguish between the three particles. In this
case, the ring is somewhat broader. In both cases positions
fluctuate, but with greater amplitude in the azimuthal direc-
tion than in the radial direction. Some of the azimuthal varia-
tion is due to rotation of the cluster about its center of mass.
In Fig. 2, the pair separations are shown to be time depen-
dent; these variations are substantially larger than the mea-
surement uncertainty of 0.01 mm. For the equilateral case,
there is only a single peak in the distribution of particle
spacings[Fig. 3(a)], while for the isosceles case, obtained for
somewhat different excitation amplitude, there are two
peaks. In a statistical sense, the two states are therefore quite
different. These spacing distributions can be fitted reasonably
well by sums of Gaussians.

The different structures found for givenN seem to be
attractors that can occur for different initial conditions but
for the same parameters. Such a multiplicity of states is also
found in other nonequilibrium systems. In all cases, the co-

ordinates and spacings fluctuate with time. We discuss the
possible causes of these fluctuations later in the paper.

2. N=4

The caseN=4 adds additional complexity. In this case,
the dynamical states include structures that are squares or
trapezoids in the mean. The trapezoidal structure is shown in
Figs. 4(a) and 4(b). Note that att,250 s a transition occurs.
As one particlesAd moves closer to its second nearest neigh-
bor sBd, B’s nearest neighborsCd moves away. The reverse
of this transition occurs later att,900 s (not shown). We
think of this as a noise-induced transition between different
basins of attraction. Not all runs show such transitions.

3. N=5

The caseN=5 includes several distinct structures: one
particle surrounded by four others, equilateral pentagons, and

FIG. 2. (Color online) Pair separations vs time forN=3: (a)
equilateral triangle and(b) isosceles triangle states.(G as in Fig. 1.)
These states correspond to different attractors.

FIG. 3. Particle spacing distributions forN=3: (a) equilateral
and(b) isosceles cases.(G as in Fig. 1.) In the second case, there are
multiple favored spacings.
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nonequilateral pentagons. The first of these is shown in Fig.
5 (color online). The interesting feature here is that this con-
figuration is unstable, with nonperiodic oscillations in the
pair spacings. In each transition, two distant neighbors of a
central particle(3) move in, while two other neighbors re-
cede. Then the new distant neighbors approach(3), and the
new close neighbors recede. Particle 3 prefers the nearer of
two alternative positions for 4 and 2, or the nearer of two
alternative positions for 5 and 1, alternately in time. The
exchange process recurs every 20–150 s. To follow this in
the figure, the online color version is superior.

4. N=6 (not shown)

Here the possible structures include five particles sur-
rounding a central one. The spacings of the members of the

outer group are not equal. Relatively rigid equilateral hexa-
gons also occur. TheN=6 case illustrates a general feature of
the small clusters: some are relatively rigid, while others are
more flexible, in the sense that the amplitudes of the pair
spacing fluctuations are larger.

B. Small clusters: Chaotic fluctuations?

Are the fluctuations of coordinates and spacings a mani-
festation of low-dimensional chaos? In principle there could
be a large number of degrees of freedom for only a few
particles, as the fluid is a continuum. We constructed the
trajectories of the system in a configuration space spanned by
the 2N coordinates, and then computed the correlation di-
mension to determine whether the fluctuations are low di-
mensional. As may be seen in Fig. 6(a) for the caseN=7, the
slope of the correlation sum(the number of points in the set
within a distanceR of a given point) is always quite low,

FIG. 4. (Color online) Trapezoidal case(N=4, G=2.97): (a)
trajectories(b) spacings vs time. An exchange of neighbors occurs
at t=250 s.

FIG. 5. (Color online) (a) Particle trajectories forN=5 sG
=2.96d; (b) separations vs time. Note the nonperiodic oscillation
indicating repeated exchanges of neighbors(see text).
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about 1.8 in a configuration space of dimension 14, for sepa-
rations larger than the measurement noise level, but smaller
than the size of the cluster. While the precise value varies
with the structure, the dimension is generally below 3 for
small clusterssN,8d. We have not used the particle veloci-
ties in addition to their positions, because the measurement
precision is less for velocities, as they have to be obtained by
differentiation. Although including velocities as well as po-
sitions would presumably enlarge the correlation dimension,
the present result tells us that a given particle cannot be
found as a neighbor of most of the others. Rather, each par-
ticle has only a few specific neighbors, in contrast to what
would occur in a sufficiently stochastic system where even-
tually any particle would be a neighbor of any other one.

On the other hand, the fluctuations forvery smallsepara-
tions R in configuration spaces,0.1 mmd could have a sto-
chastic component. The varying slope of the correlation sum
is larger for smallR, and this larger slope could be related
either to stochastic influences(e.g., surface roughness of par-

ticles influencing their dynamics when they contact the bot-
tom of the cell), or to measurement noise. Thus, one cannot
completely exclude stochastic effects, but one can say that
the variation of the correlation sum at larger spacingss0.1
,R,10 mmd is consistent with low-dimensional dynamics.

We also determined power spectra of these fluctuations
[Fig. 6(b)]. The spectrum is broadband and is generally well
fitted by a power law with exponent close to −2. This value
is similar to the value one would find for harmonically bound
particles driven by Gaussian noise. However, in the present
case, the noise appears to be dynamical in origin.

C. Small clusters: General observations

The mean spacings of nearest neighbors are shown for a
large number of structures for various values of the nondi-
mensional accelerationG in Fig. 7. Different symbols are
used for different values of the particle numberN. Note the
strong tendency for the mean spacing to increase withG
However, the mean spacing depends significantly on the spe-
cific structure, and not just onG. There is no strong tendency
for the closest spacing to uniformly increase or decrease with
increasingN.

The mean spacings are shown in Fig. 8 with bars to show
the rms spacing variation(or fluctuation) for neighbors,
which is a measure of the flexibility of the structure. Note
that these vary over a wide range. The smallest spacing
variation occurs for the two-particle case. The equilateral
triangle also has a fairly small fluctuation. This makes sense
because there should be no frustration with only three par-
ticles. On the other hand, for largerN, the preferred spacing
(if there is one) cannot occur simultaneously for all particles.
Beyond these simple cases, we are unable to predict which

FIG. 6. (a) Calculation of the correlation dimension forN=7.
The power law variation and low slope(about 2) indicates that the
fluctuations may be regarded as chaotic for separations larger than
0.1 mm. This calculation uses all 14 time series for thex,y coordi-
nates of the seven particles, so there is no need to use time delays to
reconstruct the trajectories in phase space.(b) Power spectrum of
thex coordinate of particle 1(N=7, G=2.96). The solid line is a fit
to a power law with exponent −2.2. Similar spectra are found for
particle separation time series.

FIG. 7. Mean spacings of nearest neighbors as a function of
dimensionless accelerationG and number of particlesN. The mini-
mum spacing is one particle diameter, shown by the dashed line.
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structures are more flexible and hence have a larger rms
spacing fluctuation.

Dynamics. For small clusters, the horizontal rms particle
speed is not strongly dependent onG. This behavior is shown
in Fig. 9. The probability distribution of any velocity com-
ponent is generally non-Gaussian with extended tails.

D. Large clusters

The behavior of large clusters of 25 or 48 particles is quite
different from that of the small clusters. In general, the large
ones are more flexible: particles are bound less strongly to
preferred positions. Typical examples are shown in Fig. 10,
for N=25 and several values ofG. Figure 10(a) sG=3.44d
shows a case where the particles fluctuate predominantly
around fixed positions, with occasional transitions. Figure
10(b) shows a more active case atG=5.53 where the par-
ticles diffuse freely in the central part of the cluster. How-
ever, those on the outer ring diffuse mainly on this ring.

In Fig. 11, we show the horizontal rms speed as a function
of nondimensional acceleration. ForG,3, the majority of
the particles are essentially in contact with each other(except
for some at the periphery). For largerG, the particles move
progressively faster asG is increased. This general behavior
occurs for both theN=25 andN=48 clusters. Recall that a
strong trend of this type wasnot observed for small clusters.
This separation is due to the growth of the short-range

FIG. 8. Mean spacings of neighbors for 2øNø6. Here, the bars
indicate the rms spacing variations, a measure of the flexibility of
the structure, but the number of particles in each cluster is sup-
pressed for clarity.

FIG. 9. Root mean square particle speed vsG for small clusters
s2øNø7d. There is no systematic dependence onG for small
clusters.

FIG. 10. Particle trajectories for a large clustersN=25d, for
several values ofG. In (a), at G=3.44, the particles fluctuate mostly
about fixed positions with occasional interchanges, while in(b)
sG=5.53d particles diffuse freely within the central core and along
the outer ring.
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repulsion of particle pairs for increasing nondimensional
acceleration.

The multiplicity of states noted for small clusters also
occurs for large ones. Thus, at a given value ofG, one finds
structures with horizontal rms speeds differing by a factor of
2; hence the large scatter in the data in Fig. 11.

The radial distribution function is shown in Fig. 12. There
is a clearly defined outer ring, and several inner rings that
overlap. We use the peak of the outer ring to define a mean
cluster radius. Its variation withG is shown in Fig. 13. The
cluster may be seen to grow monotonically withG as the
short-range repulsion grows.

The instantaneous particle velocity is strongly anticorre-
lated with the local particle density, as we show in Fig. 14.
The velocity is typically largest when the particle is moving
through a region where the particle probability density is

low, e.g., between the central core and the outer ring. This
makes qualitative sense if one imagines a variational model
in which the particles are driven by noise in an effective
potential. However, the persistent fluctuations imply that a
variational model can account for only the mean behavior, at
best.

Although the particles appear to diffuse freely in the core
of the cluster as shown in Fig. 15, the probability distribution
of a component of the velocity is non-Gaussian; there are
pronounced tails of large(or small) velocity. This behavior is
shown in Fig. 16(a). In Figs. 16(b) and 16(c) we look sepa-
rately at the central core of the cluster and the outer ring
surrounding it. The spread of velocities, and the mean speed,
are larger in the core than in the outer ring, but both are
non-Gaussian. This implies that the fast jumps of particles
between the core and the ring are not the only cause of the
non-Gaussian tails.

Animations of the time-dependent states described in this
paper are available[10].

IV. DISCUSSION AND CONCLUSION

These experimental results on the dynamics of particles
with fluid-mediated interactions pose stimulating issues for
theoretical consideration, and provide insights into the fluid-
mediated interparticle forces.

First, our results imply that a pairwise interaction is not
sufficient to explain all of the experimental results. This may
be seen from the fact that the preferred spacing forN=3 is
always greater than forN=2. In addition, purely additive
pairwise forces could not account for the existence of both
isosceles and equilateral structures at the sameG.

FIG. 11. Horizontal root mean square particle speed for large
clusters. Most particles are in contact forG,3.

FIG. 12. Particle number density as a function of radius forN
=25 sG=5.53d, showing a clearly defined outer ring and an internal
core with some structure.

FIG. 13. Cluster radius, as indicated by the peak in the number
density corresponding to the outer ring, as a function of nondimen-
sional accelerationG for N=25 and 48. The data imply a gradual
growth of the preferred pair separation withG in large clusters.
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What is the nature of the interaction? The previous work
of Voth et al. demonstrated that there is both a short-range
repulsion and a long-range attraction. Therefore, it is tempt-
ing to think in terms of an effective potential that is much
like that of interacting neutral atoms. However, all of these
states involve significant dynamical fluctuations, whereas
thermal fluctuations should be exceptionally small. What is
the origin of these fluctuations? One logical explanation is
that they are chaotic fluctuations arising from the dynamics
of the particle-fluid system. Our measurements support the
hypothesis that these are indeed low-dimensional chaotic
fluctuations. We know that individual isolated particles do
not fluctuate significantly, and the observed collective fluc-
tuations do not cause the particles in the small clusters to

explore the entire available space of allowed positions. Of
course it is possible that the particles might explore more of
the configuration space in a longer observation time, but the
most likely hypothesis given the available evidence is that
we are observing chaotic dynamics induced by the complex
interaction between particles, mediated by the hydrodynam-
ics.

The origin of the chaos is not known in detail. Do three
particles moving in a fluid provide sufficient degrees of free-
dom at the very modest Reynolds numbers of this experi-
ment? Each particle requires six position and velocity coor-
dinates to describe its three-dimensional motion, so the
answer would seem to be positive. On the other hand, we do
see small fluctuations even forN=2, where the number of
degrees of freedom is smaller. In this case, the smaller noise
level could be due to imperfections such as the slight surface
roughness of the particles, which may provide a small ran-
dom element to their collisions with the driving surface.
However, forN=3, the observed fluctuations appear to be
real. It would be interesting to simulate the behavior of these
clusters numerically. The chaotic dynamics may involve
phase differences between the vertical oscillations of differ-
ent particles.

How can we understand the expansion of the clusters asG
is increased? Is the increase due to a growth of the preferred
separation, or is it like thermal expansion in a solid, where
the increasing noise at higher temperatures allows larger
separations to be explored more frequently by the atoms?
This question remains to be resolved.

The fluctuations of the large and small clusters behave
quite differently as a function of excitation amplitude. While
the small clusters do not fluctuate more rapidly asG is in-
creased(Fig. 9), the opposite is true of the large clusters

FIG. 14. (a) (Color online) Anticorrelation between instanta-
neous speed in the horizontal plane and particle density, forG
=4.35. Color and size are used to indicate velocity. Particles move
quickly between the core and the outer ring.(b) The mean speed at
radiusr is shown along with the number density from Fig. 12, to
demonstrate the anticorrelation.

FIG. 15. Mean square particle displacement as a function of
time for N=25, averaged over all particles. The behavior is diffu-
sive (G=5.25).
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(Fig. 11). It is tempting to think ofG as a surrogate for
temperature, and the interactions as being approximately de-
scribed by an effective potential. However, the data show
that thinking ofG as an effective temperature is not a fully

adequate approach. The reason may be that although the dy-
namical noise grows withG, the forces do also, so that the
particles are trapped in deeper potential wells asG is in-
creased for small clusters. For large clusters, on the other
hand, the balance between these two effects is finally tipped
toward larger fluctuations with increasingG. When a particle
has many neighbors, there are a large number of neighboring
configurations where all the particles experience little net
attraction or repulsion, and hence are easily perturbed by the
ambient dynamical noise. One can perhaps think of this as
many comparable local minima of an effective potential,
separated by small barriers.

The notion that chaotic fluctuations arising from deter-
ministic internal dynamics can behave similarly to stochastic
(external) noise has been suggested from time to time in fluid
systems[11]. Here we have a situation where this seems to
be roughly the case.

We leave for future work the exploration of the role of
viscosity in this problem, because a substantial investigation
would be required given the diversity of phenomena docu-
mented here. The influence of the viscosity on the interpar-
ticle forces is probably not fully captured by the Reynolds
number alone(based on the particle’s rms velocity and size,
and the fluid’s viscosity). The velocity variation during the
bouncing trajectory, and hence the streaming flow and inter-
particle force, depends also on the forcing conditions, and on
the relative importance of gravity and viscosity.

An interesting problem for the future is to relate the clus-
tering phenomena described in this paper to quantitative
measurements of the mediating flow field such as those made
by Otto and Voth[9]. However, the dynamic interactions
between multiple particles documented here introduce addi-
tional complexity beyond that manifested in their work on
fixed particle pairs. A quantitative understanding of multipar-
ticle fluid-mediated interactions remains somewhat out of
reach at present.
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